skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Himel, Md_Sakhawat Hossain"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Manipulating light is an important area of optical research and development. To that end, tunable dichroic devices in which the reflectivity at differing wavelengths can be adjusted, are particularly valuable. This work is motivated by recent studies of the optical properties of chiral ferroelectric nematic liquid crystals (FNLCs). Here electro‐optical studies are presented on two room temperature, FNLC materials that demonstrate electrically tunable reflectivity when subject to a field below 0.2 V µm−1. Moreover, under appropriate conditions, the reflectivity can also be electrically (and reversibly) tuned (without change of color) from 0% to 40%. Reversible, low voltage tunable mirrors, having miniscule power consumption and operable around ambient temperature are expected to be useful in diverse applications ranging from energy‐saving, smart windows to virtual reality interfaces. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  2. Khoo, Iam Choon (Ed.)
    Lenses with tunable focal lengths play important roles in nature as well as modern technologies. In recent years, the demand for electrically tunable lenses and lens arrays has grown, driven by the increasing interest in augmented and virtual reality, as well as sensing applications. In this paper, we present a novel type of electrically tunable microlens utilizing polymer-stabilized chiral ferroelectric nematic liquid crystal. The lens offers a fast response time (5ms) and the focal length can be tuned by applying an in-plane electric field. The electrically induced change in the lens shape, facilitated by the remarkable sensitivity of the chiral ferroelectric nematic to electric fields, enables the tunable focal length capability. The achieved performance of this lens represents a significant advancement compared to electrowetting-based liquid lenses and opens exciting prospects in various fields, including biomimetic optics, security printing, solar energy concentration, and AR/VR devices. 
    more » « less